1. Odds Analyze Review Definition
  2. Odds Analyze Review Articles

And even more statistics - leagues tables, team profiles, odds comparison, soccer streaks, cards and corners. SportArbiter is website where you quickly find today, upcoming or finished soccer matches. Soccer prediction section is powered by statistical analysis on entire historical SportArbiter football database. Find top College Football betting Odds, Matchups and Picks from VegasInsider, along with more college football information to assist your sports handicapping. We are doing a meta-analysis of the link between quality social support and the risk of readmission in patients with asthma. Some studies have provided raw data (number or percent of readmitted. Odds analyzing made easy. With over +100.000 matches in our database, we analyze each match for you and predicts the outcome of the game with our unique OA score.

Sportsbook Scout Helps You Become a Better Bettor

Tools, Odds, and Guides that help you beat the sportsbooks

Sportsbook Reviews

Looking to bet on sports online in the USA? Check out our sportsbook reviews and find the right book for you!

Sports Betting Tools

Want to bet smarter? Try using our free tools that will help you beat the sportsbooks.

Odds

Easily find and compare the odds across legal US sportsbooks to give you an edge.

Odds analyze review articles

Sports Betting Guides

Find the best info on sports betting. From the basics to advanced techniques, we have you covered.

Blog

Follow the blog to get unique sports betting insights from an analytical perspective.

USA Sports Betting

Get the latest info by state on legal sports betting in the United States.

Best Sportsbook Reviews

Best Sports Betting Tools

Best Sportsbook Odds

Review
Command:Statistics
Meta-analysis
Odds ratio

Description

For a short overview of meta-analysis in MedCalc, see Meta-analysis: introduction.

MedCalc uses the Mantel-Haenszel method (Mantel & Haenszel, 1959) for calculating the weighted pooled odds ratio under the fixed effects model. Next the heterogeneity statistic is incorporated to calculate the summary odds ratio under the random effects model (DerSimonian & Laird, 1986).

How to enter data

The data of different studies can be entered as follows in the spreadsheet:

In this example, in a first study 73 cases were treated with an active substance and of these, 15 had a positive outcome. 23 cases received a placebo and 3 of these had a positive outcome. On the next rows of the spreadsheet follow the data of 4 other studies.

Required input

The dialog box for 'Meta-analysis: odds ratio' can then be completed as follows:

Odds analyze review definition

Studies: a variable containing an identification of the different studies.

Intervention groups

  • Total number of cases: a variable containing the total number of cases in the intervention groups of the different studies
  • Number with positive outcome: a variable containing the number of cases with positive outcome in the intervention groups of the different studies

Control groups

  • Total number of cases: a variable containing the total number of cases in the control groups of the different studies
  • Number with positive outcome: a variable containing the number of cases with positive outcome in the control groups of the different studies

Filter

A filter to include only a selected subgroup of studies in the meta-analysis.

Filter: a filter to include only a selected subgroup of cases in the graph.

Options

  • Forest plot: creates a forest plot.
    • Marker size relative to study weight: option to have the size of the markers that represent the effects of the studies vary in size according to the weights assigned to the different studies. You can choose the fixed effect model weights or random effect model weights.
    • Plot pooled effect - fixed effects model: option to include the pooled effect under the fixed effects model in the forest plot.
    • Plot pooled effect - random effect model: option to include the pooled effect under the random effects model in the forest plot.
    • Diamonds for pooled effects: option to represent the pooled effects using a diamond (the location of the diamond represents the estimated effect size and the width of the diamond reflects the precision of the estimate).
  • Funnel plot: creates a funnel plot to check for the existence of publication bias. See Meta-analysis: introduction.

Results

Odds

The program lists the results of the individual studies: number of positive cases, total number of cases, and the odds ratio with 95% CI.

The pooled odds ratio with 95% CI is given both for the Fixed effects model and the Random effects model. If the value 1 is not within the 95% CI, then the Odds ratio is statistically significant at the 5% level (P<0.05).

The random effects model will tend to give a more conservative estimate (i.e. with wider confidence interval), but the results from the two models usually agree where there is no heterogeneity. See Meta-analysis: introduction for interpretation of the heterogeneity statistics Cohran's Q and I2. When heterogeneity is present the random effects model should be the preferred model.

See Meta-analysis: introduction for interpretation of the different publication bias tests.

Note that when a study reports no events (or all events) in both intervention and control groups the study provides no information about relative probability of the event and is automatically omitted from the meta-analysis (Higgins & Green, 2011).

Odds

Forest plot

The results of the different studies, with 95% CI, and the overall effect with 95% CI are shown in a forest plot:

Note that the Odds ratios with 95% CI are drawn on a logarithmic scale.

Literature

  • Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2009) Introduction to meta-analysis. Chichester, UK: Wiley.
  • DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Controlled Clinical Trials 7:177-188.
  • Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from www.cochrane-handbook.org
  • Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557-560.
  • Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from the retrospective analysis of disease. Journal of the National Cancer Institute 22:719-748.
  • Petrie A, Bulman JS, Osborn JF (2003) Further statistics in dentistry. Part 8: systematic reviews and meta-analyses. British Dental Journal 194:73-78.

See also

Recommended book

Odds Analyze Review Definition

Introduction to Meta-Analysis
Michael Borenstein, Larry V. Hedges, Julian P. T. Higgins, Hannah R. Rothstein

Buy from Amazon US - CA - UK - DE - FR - ES - IT

Odds Analyze Review Articles

This book provides a clear and thorough introduction to meta-analysis, the process of synthesizing data from a series of separate studies. Meta-analysis has become a critically important tool in fields as diverse as medicine, pharmacology, epidemiology, education, psychology, business, and ecology.

Coments are closed
Scroll to top